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Steady-State MSE Convergence of LMS Adaptive
Filters with Deterministic Reference Inputs with
Applications to Biomedical Signals

Salvador Olmos and Pablo Laguna

Abstract—In this paper, we analyze the steady-state mean algorithmis to a large extent due to its computational simplicity.
square error (MSE) convergence of the LMS algorithm when Fuyrthermore, it is generally felt that its behavior is quite simple

deterministic functions are used as reference inputs. A particular 4 nderstand [4], [5], and the algorithm appears to be very ro-
adaptive linear combiner is presented where the reference inputs bust Y

are any set of orthogonal basis functions—the adaptive orthogonal L . .
linear combiner (AOLC). Several authors have applied this struc-  The most common applications of the LMS algorithm (noise
ture always considering in the analysis a time-average behavior canceling, prediction, identification systems, etc.) use random

over one signal occurrence. In this paper, we make a more precise reference inputs. As a consequence, the majority of authors have
analysis using the deterministic nature of the reference inputs and analyzed the properties of the LMS algorithm for random inputs.

their time-variant correlation matrix. Two different situations
are considered in the analysis: orthogonal complete expansions Several authors analyzed the MSE convergence of the LMS al-

and incomplete expansions. The steady-state misadjustment isgorithm for Gaussian random inputs under thdependence
calculated using two different procedures with equivalent results: assumptiof5]—[9]. This assumption, although clearly violated

the classical one (analyzing the transient behavior of the MSE) and in many applications, simplifies the analysis significantly. The

as the residual noise at the output of the equivalent time-variant - giscrepancies between theoretical results based on this assump-

transfer function of the system. The latter procedure allows a . . - . . .
very simple formalism being valid for colored noise as well. The tion and the true algorithm behavior was investigated in [10] and

derived expressions for steady-state misadjustment are contrasted found to be relatively small. A more realistic assumption (less
with experimental results in electrocardiographic (ECG) signals, strong) has also been used by several authors [11], [12], where

giving exact concordance for any value of the step size. statistically dependent reference inputs are considered.
Index Terms—Biomedical signal, deterministic input, LMS Much less work has been done with deterministic reference
adaptive filters, steady-state analysis. inputs. Some of the applications are related to adaptive noise
cancellers of sinusoidal interferences [13]-[17], where a deter-
l. INTRODUCTION ministic periodic waveform can be used because the disturbance

period is knowra priori or can be estimated from noise source
T HE MOST well-studied bioelectrical signals are the evenineasurements. The behavior of the LMS algorithm for sinu-
related signals that are time locked to a stimulus. The stigyjqa) references is slightly different than when the inputs are
ulus can be external, as in visual, auditory, or electrical in th§ndom and is denoted as a non-Wiener solution of the LMS al-
case of evoked potentials, or internal, as in electrocardiograrggrithm [13], [14], [16]. In all these works, the structure of the
(ECG’s). For internal stimuli, a time-reference point can be dﬁdaptive filter was a transversal filter.
fined from every signal occurrence, for example, the QRS fidu- | the field of biomedical signals, several applications of the
cial ppintforECG. The repetitive signals are often contamina_t%iu“ime_input adaptive linear combiner (ALC) [4] have been
by noise from several sources. In general, an event-related sighi@losed, where several deterministic functions are used as ref-
can be considered to be a stochastic process that can be de¢qghce inputs [18]—[23]. Very little accurate work has been ad-
posed into a periodic deterministic signal that is time locked taflessed to the MSE convergence analysis of the LMS algo-
stimulus and an additive stationary noise uncorrelated with thgym with deterministic reference inputs. Most of the authors
signal. Several signal processing techniques are used to reco\nally use all the basis functions (the number of basis func-
the signal hidden in the noise. The adaptive signal processmsp is the same as the signal duratidhsamples). However,
technique appears to be appropriate for such situations [1}-{&]any applications need a reduced number of coefficients (e.g.,
The LMS algorithm [4] is undoubtedly the most popular algagata compression [24], monitoring, detection, and analysis of
rithm for adaptive signal processing. The popularity of the LMﬁathologies like ischemia in ECG [25] and hypoxia in evoked
potentials [18]). Two different situations will be considered in
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al. [26] presented a simple MSE convergence analysis of the dlk] = s[k] + n[k]
LMS algorithm when exponential functions were used as ref-

erence inputs. They applied the classical expressions of MSE Xo[k]

convergence based on the independence assumption derived for X, [k]

random input reference signals [27]. In Section Ill, we show a X5[k]

more precise analysis of the MSE convergence considering the :

deterministic reference input signal nature and their time-variant Xpalk

correlation matrix.

In[19], [28], and [29], it was shown that the LMS algorithm
with periodic impulsive reference inputs is equivalent to a linear
time-invariant filter, whose transfer function is a comb filterFig. 1. Adaptive linear combiner with orthogonal basis functions as reference
In addition, the misadjustment was interpreted in [29] as tH@Us (AOLC).
residual noise that passes through the filter. In Section IV, we
generalize the same result for any complete orthogonal trapgights. The adaptive system dynamically estimates the amount
form (not only the identity transform formed by impulse funcef each reference inpuX;[k] present in the input signal[x].
tions) obtaining the same misadjustment result as in [29]. Moreor the analysis, we will consider that the basis functiiijk]
over, we recently showed that when a reduced number of furge periodic, i.e.X[k + N] = X[k] for all k. The number
tions is used in the ALC, the adaptive filter is equivalent to &f basis functiong < N will be variable. The filter output
linear time-variant periodic filter [30], [31]. The misadjustmeny[k] = W7 [k]X[k] with W' [k] = (Wo[k]W1[K] - - W,_1[K])
interpretation as the residual noise through the linear filter cagcovers the deterministic part @f] correlated with the refer-
also be applied for incomplete expansions obtaining the sa@gce inputs, whereas the uncorrelated noise is attenuated. The
results as with the classical time-domain analysis but in a margis algorithm tries to minimize the mean-square value of the
elegant and direct fashion. error signale[k].

Finally, simulation results with ECG signals from the QTDB |n the next section, we will show that when complete expan-
database [32] corroborate that the derived equations for &lens are consideragd= NV, the weight vector converges to the
steady-statexcess MSHive exact results even for high Va|ue%ptimum Wiener solutioiW ., which is the projection of the
of the step-size:. deterministic signak[n] onto the space generated b, [k]}.

The estimation error at the optimum Wiener solutigg [£] can
be decomposed into two terms

Il. ADAPTIVE ORTHOGONAL LINER COMBINER

T

The ALC [4] with the LMS algorithm has been applied to the Copt [F] = d[k] — Wop, X[K]
analysis of ECG signals [3], [4], [19], [22], [33], evoked poten- = s[k] + n[k] — W, X[k]
tials [18], [34]—-[36], and impedance cardiography signals [21]. = c[k] + n[k]. (2)
It makes use of the recurring features of the signal. In this work,
we denote theadaptive orthogonal linear combindAOLC)  The first component{k] = s[k] — W2 X[k] represents the
filter as a particular form of the ALC whose reference inputs aesstimation error due to the truncation of the orthogonal expan-
the basis functions of any orthogonal transform. Several authgisn. If we assume that the deterministic part of the input oc-
have analyzed special cases of this structure using as referesreence-concatenated sigsft] remains constant over all oc-
inputs impulse functions [15], [19], [28], [29], Walsh functionscurrences, then botj%] andc[k] are periodic. The second term
[18], cosine functions [35], [36], exponential functions [20]n[k] is the noise present in the observed sigfj&]. Moreover,
[26], Hermite functions [22], and KLT functions [23], [25], [30]. the componentsg[k] andn[k] are mutually independent. In the
In this paper, we generalize all these configurations to any gOLC, the reference inputs are deterministic and statistically
thogonal transform whose basis functions at time instaate  independent from the noisgk]. No independence assumptions
denoted aX[k] = (Xo[k] X1[k] - -- X,—1[k])*, whereX;[k] is are needed in this case.
the value of theéth basis function at time instait andp is the The MSE performance of the AOLC filter is analyzed here
number of functions used in the modeling. using two different ways with equivalent results. First, in Sec-

The structure of the adaptive filter is shown in Fig. 1. The priion Ill, we use the classical analysis, i.e., the transient analysis
mary inputd[k] = s[k] + n[k] consists of concatenated signabf the MSE for zero-mean white noise, and second, we evaluate
occurrences (composed of the deterministic @t and the the steady-state MSE as the residual noise at the output of the
noise part:[k]). The noisen[k] is a wide-sense stationary sto-system using its equivalent transfer function in Section IV.
chastic process, whereat] is the biomedical signal under
study after anv-sample segmentation defined around the stim-
ulus instant. In the steady-state analysis of the algorithm, we as-
sume thas|k] is periodic. In practices[k] will be time variant, =~ The solution to the finite difference equation of the LMS al-
and the algorithm will try to track the signal changes in a figorithm
nite adaptation time. A first approximation analysis is to con-
sider that the adaptive algorithm has infinite time to adapt its Wk + 1] = W[k] + 2pe[k]X[X] (2

Ill. TRANSIENT ANALYSIS OF THE MSE
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is given by [14], [37] Thefirsttermis atransient@ < ;. < 1and assuming that the
deterministic pars[k] is periodic, the steady-state mean weight

kol vector will be

WIk] = Fr_1,0W[0] + 2 Z dm]Fy—1,m+1X[m] (3)

m=0

1—1
where E{lim WI[iN]|} = lim {2u Z (1—2p)
' =00 =00 l=0
J
_ T P> N-1
Fjn= kl__[ (I—2pX[EXTE]), j=m 4) > E{d[lN+m]}X[m]}
I Jj < m. m=0
N-1
The first termF;_; (W[0] is a transient, and it will be null = Z s[m]X[m] = Wopt (10)
at steady-state if low values of the step-sizare used(0 < m=0
p < 1) becausdim; ., ||Fr_10| = 0. Alternatively, we
may assume tha[0] = 0. if zero-mean noise is assumed. Thus, the weight vector of the

The convergence analysis of the LMS algorithm for thgo| ¢ for complete expansions converges to the optimum
AOLC is a bit simpler because botX[k] and F;,, are \yiener solution, i.e., the clean signal projection onto the
deterministic as well as periodic. We consider two differenfsnsformed domain defined by the basis functidik]}.
situations in the analysis: complete expansions and incCOMpIgig iajently, the steady-state weight vector is an unbiased esti-
expansions. mate ofW,,;. The weight error vectoV k] = Wk] — W,
at any occurrence time instajtof the ith occurrence can be
written using (3) as
When complete orthonormal expansions are used, the basis

function matrix . . ,
V[iN +j] =Fintj-1,; V]

A. Complete Expansions

M= (X[0] X[1] --- X[N-1]) (5) o
iN+j—1
is square and unitary [38], i.e., +2u Y. eoptlmIFingj1mi X[m]
m=j
MM? =1y =M"M. 6
N © 0<j<N-1. (11)

The first equality is equivalent to the orthogonality

property of the basis functions over the time indem the complete expansion casé[k] is due to the noisel[k]
Yi—o  Xjlk[Xm[k] = &jm, whered;, is the Kronecker pecause the truncation eridk] is null, andep:[k] = n[k].

delta function. The second equality implies a second kind of The minimum error can be calculated from (1) @s, =
orthogonality involving different time-index vectors over th%{egl)t[k]} = ¢2. The total mean square error will be the sum
basis index, i.e X*[j]X[m] = Xg" Xilj1Xilm] = 6m- N ¢[k] = E{2[k]} = &uuin +E[k], where theexcess MSE™[k]
this case, the time-variant transition matrix produts, are can be written [27] as

greatly simplified, and it is easy to demonstrate that

/ (k] = E{XT[k]VE]IVT [k]X[k
Fiw=T-2: % XHX'W  j>m () €[] = E{XT VMV X[}

k=m

— 2B copi[K]XT [K] VK] (12)
If we consider the transition matrix product of a complete signal

occurrence, we havE'n_1 9 = (1 — 2u)I, and the product
Fx_1 m+1X[m] reduces taX[m]. Hence, the weight vector at
time N from (3) reduces to

The last term of (12) can be decomposed using (1), as

ZE{GOPt [k] XT []C]V [k] }

N—-1
WV = (1 - 20W[0] +21 Y dim|X[m].  (8)
m=0 = 2c[k]XT K| E{V K]} + 2XT [K|E{n[E]V[K]}. (13)
We can iteratively apply (8) to an integer numbeof signal
occurrences giving When complete expansions are considee@fel, = 0. In addi-
‘ tion, the termE{n[k]V[k]} is also null if zero-mean white noise
WIiN] =(1 - 2p)"W(0] is assumed. Hence
i—1 N—-1

+2p Y (-2 > dIN +m]X[m]. (9)

1=0 m=0 €[kl = XTRE{VFIVT R} X[A]. (14)
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The weight error correlation matri€{V[k]VZ[k]} at the which is very close to the exact result, especially for very low
end of theNth occurrence can be calculated from (11) as  values ofu, as was the case in [26]. The difference arises from
the fact that Barrost al.used a recursive equation for the weight

E{V[iN|VI[iN]} error correlation matrix [26, eq. (7)] that was derived in [27]
= (1 = 2w E{V[0]VT[0]} for random reference input signals by applying the Gaussian
i1 moment factoring theorem. However, the reference input signals
+2u(1 — 2p)° Z(l —2p)! considered in [26] were deterministic (exponential functions).
=0
N1 B. Incomplete Expansions
> X[m]E{n[IN +m]VT[0]} When a reduced number of basis functions is used in the
m=0 ‘ AOLC p < N, we can conceptually analyze the MSE conver-
i = gence in a similar way as in the last section. The only difference
+2p(1 = 2p) (1 —2p) is that now, the analytical expressions are more complex. In ad-
=0 dition, the truncation erroe[%] is no null.
= When an incomplete set of basis functions is considered, the
. T 1
g;o E{n[IN +m]V[0]} X" [m] complete basis function matri¥ can be partitioned as
i—1 i—1
At Y D (-2t M = {Ml} (20)
11_0 lo=0 M>
Z Z E{n[lLN +mi] M, being the(p x N) matrix formed by the selected basis func-
ogu gl tions andM; the ((N — p) x N) complementary matrix. Ap-
n- N + ma] Y X[ X7 [ma]. (15) plying (20) to the first equality in (6), we obtain
T _ T _
The second and third terms are null if zero-mean white noise is MlMlT =1, MQMTl =0
assumed.Therefore, in that case M M; =0, MyM; =1Iy_, (21)
E{V[iN|VT[iN]} and from the second equality in (6)
= (1 -2 E{V[]V'[0
(1= 2" EVIOVT 0} MM, + MIM; T, 2

+ 42021 Z (1—2p)% (16) _ _
From (21), we corroborate that the orthonormality over the time
index is also true for a reduced number of orthogonal functions,
sincexY_} X[m]XT[m] = T. Finally, the steady-state excess.e., M;M] = L. In contrast, the orthonormality over the basis
MSE can be written using (14) and (16) as index is lost in generalM¥M; # Iy ) because at least one
term of MZ M, is nonzero. In summary, when incomplete ex-
C exr 4402 I pansions are uséd’ [j]X[m] = 7., # 6;m and the transition
lim ¢ [LN] =% = $mnT—. (17) ; F P
i—o0 1—(1—2u)? 1—p matrix productsk; ., in (4) have a more complex description.
The steady-state weight error vector can be calculated from (11)
If we want to calculaté®*[k] at time instants different from the by taking the limit as — oc. The first term will converge to
end-occurrence timgk = iN + j,j # 0), we can apply an the null matrix for small values qf because
equivalent recursive relation to (16) fgr # 0, obtaining the
same steady—st_ate excess M_SE value asin (17). The normalized lim Finij_1; = lim (Fyyj_1,)" =0. (23)
steady-state misadjustment is ree ree

I The difference is that two different driving terms must be con-
M[ec] = m (18)  sidered now becausg,, [k] has two components (1). Hence

The same result was obtained in [19], [29] for periodic impulsdim V[iN + j]

functions, where the simplicity of the basis functions allowed ah i1 N+j71
easy estimation of the misadjustment. The expression obtained
—2 3 (P 1) X
=0

estin Faei1mitX
now is valid for any complete orthogonal transform. In contrast, el i-1mXm]

the expressionin [26, eq. (34)] gives a steady-state misadjust- o m=j
ment of o Z Frp 171
N/J)\ 12
= = (19) N+j—1
1—pA(N+1 1—p—p/N
BA( ) p=p/ - 3" N+ mF g1 ma X[ (24)

IThe definition of the step-size in [26] was twice the value here. m=j
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Now, V[k] is originated by two different sources: the truncatiowhere
errorc[k] and the noise[k]. Applying the expected value, we

obtain E{copi[mleopi[l]} = E{(c[m] +n[m])(c[l] +-n[l])}
= c[m]e[l] + o28[m — 1] (29)
E{lim V[iN + j|}
1o . if n[k] is assumed to be a zero-mean white noise with variance
=2p(I—Fnyj1y) o2, In this case
N4j—1
> dmFayicimii X, £0. (25) lim E{V[N + j]JVT[EiN + 5]}
m=j oo

zN-l—J 1 iN4+j—1

B DI

The steady-state weight vector of incomplete expansions is a bi-

ased estimate dW ,;, and the bias is different at different oc- F " X XL NFL

currence-time instants The bias is originated by{%] and can iN4j—Lmtl [m] NFix 141

be made small using a high number of basis functions or using a 5 o N1 -
transform that packs the signal energy in a low number of basis +4ptoy, Z Fingj—1,m+1X[m] X" [m]
functions. The bias depends on the step-gizea complex way m=y

becausdr; ; also depends op. . F;‘FNJ“ L+l (30)

The minimum error is now time-variant
The first term is due to the truncation errgf;] (deterministic

5 and periodic), and the second term is generated by the presence
Emin[k] = E{cgp [k]} of noisen[k]. Applying the periodicity of the basis functions,
=k + o2, (26) (30) can be written as

T
The excess MSE can be calculated using (12) and (13). The M EAVEN + IV [iN + 41}

weight error correlation matrix can be calculated by multiplying N+4j—1 N+4j—1
(11) and applying the expected value = 4B, Z Z
m=j
E{V[iN + jIVT[iN + j]} — -
= Fin+i L EAVIIV N F 1, Evrt e XN ) B
iN+j—1
+ 2/,LF1‘]\T+]'_17]' r;} E{V[j]COPt [m]} —+ 4”202 Z (F]\T-l—jfl,j)st (F£r+j717j)s (31)
s=0
) XT [m]Fz;\‘r-I-j—l,nl—l—l
IN4j—1 where
+2 F7 T+i—1.m X[m —
I’L 7;] /\+J 1, +1 [ ] BJ — (I _ F]\T-f—jfl?j) 1 (32)
E{Com [m]VT [J]}FzN+J 1,5 and
ZN+J 1 iN+j—1
Z Z E{Copt m]copt [l]} o T ya
— ‘ Q; = Z Fnyj1,mp1 XX m]FN 1 g1 (33)

m=j
'FiN+j—1,m+1X[m]X [Z]FiN+j—1,l+1- (27)
We do not have a closed form of the sum of the second term

To calculate the steady-state value, we take the limit-asco. series in (31)

All the first three terms are transient (null at steady-state) if the 00

step-sizey is selected to accomplish (23). As a consequence, Z (F]\’+j71,j)8Qj(F£’+j71,j)S =H; (34)
the steady-state weight error correlation matrix can be written =0

as

but its convergence is guaranteed because of (23). A numerical
approximation of the sum of the serikk; can be obtained by

ih_?c}o E{VEN +jIVIEN + 4]} truncating the series to a finite number of additive terms. Finally,
iN4j—1 iN+4j—1 the steady-state weight error correlation matrix can be written
S0 Blepmlean]) as
m=j =5

Fiveg L XX UF e (28) R E{VEN +jIVT[iN +j]} = 44°D; + 4”07 H; (35)
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where pulse functions) obtains the same time-invariant transfer func-
tion (38).
Nbi—l Ng—L In [29], the misadjustment was interpreted as the residual
D; =B; ( Z Z c[m]c[l] noise that passes through the equivalent transfer function. As
m=j =] a consequence, the steady-state excess MSE for complete ex-

pansions can be obtained as the integral value
Fngj e XmIXPFS 0 | B (36) .
o =50 [ IHEIPSI(E do (39)

a -7
The weight error correlation matrix is composed of two different
terms: the first one due to the truncation error and the secoptlere S, (c/*) is the noise power spectral density. In the case
term due to the presence of the noise. of white noise with variance?, the integral can be easily eval-

Finally, the steady-state excess MSE attime instanatiN+  uated using Parseval’s relation as

4,1 — oo can be calculated using (12), (13), (25), and (35) as

ex 2 2
lim &[N + 4] EX[ocl =02 > |R[K]|
=00 k=—00
= 4 X7 [ID;X[j] + 4pPon X [51H; X [j] o0
T e ’ =l Y (1-2? =02t (40)
. . — U
— 4pclf] X" [j]B; Z dm]E Nt j-1,m4+1X[m]. =0

m=j

The excess MSE is the same as in (17). One major advantage
of this misadjustment interpretation is that it can be easily cal-

Remember that this expression is only valid for white noisﬁzjelaﬁﬁiéﬁglcgg noise spectral density functions by evaluating

Furthermore, the steady-state excess MSE of incomplete expan-
sions is different at different time indexgsThe last equation g Incomplete Expansions

reduces to the complete expansions case (17) dgitjg= 0 . . .
and considering complete basis functidgg:]. When a reduced number of basis functions are used in the

We can distinguish three different terms in (37): the first orf%o'-c' the system is equivalent to a linear time-variant. periodic
42X T [j]D;X[4] is the power of the biased estimationfk] f!lter [30]_, [31]. H_ence, the stea_ldy—state excess MSI_E W|I_I also be
originated byc[k]; the second termy 22 X [jJHLX[j] is the time variant, as_|t was shown_ln 37). The time-variant impulse
variance introduced by the noisék], and the third term is the "€SPONSé:[n, k] is introduced in Appendix A.
cross-term of the truncation errefk] and V[k]. A new term _f the primary input signal is decomposed ] = b[k] +
could be obtained from the interaction betwegh] andV[k], c[*l + 1k, where _
but it was null in (37) because white noise was assumed in the/[¥] deterministic component over the signal subspace
analysis. There is no interaction between the truncation error spanne_d by the basis functions;
¢[k] and noise:[k] because they come from two different phys- ¢[¥] truncation error;
ical sources. The first two terms in (37) are related to the first *[¥] observed noise; _
term in (12) becaus®[k] has two independent sourcegt] 1€ €xcess MSE can be calculated using (26) as
andn[k]. The third and the “missing” terms in (37) are related

(37)

to the second term in (12). EFR] = &[K] = &minlK]
= E{(b[k] + c[k] + n[k] — y[k])*}
IV. TRANSFERFUNCTION INTERPRETATION — (P[] + E{n?[K]}). (41)

A. Complete Expansions

... The AOLC system s linear, and therefore, the output sig[idl
Several authors have analyzed the ALC when periodic M be decomposed into three temig = ys [k]+yo [k +n k],

pulse functions are used as reference inputs (a complete EXRere each term is the output corresponding to one of the input

sion), showing its equivalence to a linear time-invariant fiItetr .
. ermsb[k], c[k], andn[k], respectively. The steady-state output
[19], [28], [29], [39]. The impulse responggk] of the system ,[k] in the absence of noise will bg[k] = b[k] because the

is an impulse train with exponentially decreasing amplitude e o . .
pending on the value of the step-sizd29, eq. (21)]. The fre- corresponding input signalk] is completely represented by the

quency respons# (¢#*) is a comb filter whose lobe-width is p basis functions. Applying the zero-mean noise assumption to
oroportional tos (41) and after some simple algebraic manipulations, we get

Y (e9) 2N k] = y2lk] + E{yn [k} — 2clklye[k] — 2E{n[k]y.[k]}

H(e™) = D(eiw) 1+ (2 — 1)e—dwh” (38) 42)

We have recently shown [30], [31] that any complete orthogvhere the cross-term products betwesh] and the determin-
onal transform (and not only the identity transform made of inistic signalsb[k], c[%], w[k], andy.[k] are null. In the case of
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Finally, the third term of£*[k], —2 ¢[k]y.[k] can be easily cal-

culated as
c[k] Jim —2¢[iN + jlyc[iN + j]
nlk] = —2c[j]y.[j]
=-2dj] > dmifm,j]. (46)

Fig. 2. Schematic block diagram of steady-stgitgk] calculation according Summing all three terms, the steady-state excess MSE is

to the transform function interpretation (42).

lm &[N + 4]
white noise, the tern& { n[k]y,, [k]} is also null. Fig. 2 illustrates  “~ )
(42) with a block diagram. The inputs to the linear time-variant _ < i om]fm j])
system AOLC are both error sources: the truncation etfdr ’

and the noise:[k]. Four different outputs are obtained. The

m=—0oc

first termy?2[k] is the power of the response #fk]. This term +02 Z R [m, 5] — 2¢[j] Z dm]fm, j].
is the same thad;?X”[j]D;X[j] in (37). The second term — s
E{y2[k]} is the noise variance at the output, which is the same (47)

as4p?o2XT[j1H;X[j] in (37). The cross termie[k]y.[k] and

2E{n[k]y.[k]} also have a equivalence term in (37). We can

conclude that there is a direct relationship between each termlbfS expression can be more easily evaluated than (37) because

(37) and (42). the sequencé[m, j] can be obtained running the filter with an
We need to calculate the output signal power of a time-variafPut impulse at time instanyt, and the instantaneous impulse

periodic system. In Appendix A, we derive expressions for t{&SPONsei[m, j] is directly related tofm, j] by (55) of Ap-

response of a time-variant filter to deterministic and randoRENdiX A.

input signals. The term?[k] in (42) can be evaluated using (58) "€ two excess MSE expressions (37) and (47), corre-
as sponding to the two different approaches, are term-by-term

equivalent, even though their appearance is very different.
) When the truncation errai%] is small and very low values of
] ) ) ) step-sizen, are used, we demonstrate in Appendix B that both
lim 2N +7]=| D> clm]fim,J] : imolifi i ically i
iDae O° ’ equations can be greatly simplified, showing analytically its

. m=Tee equivalence for this particular case.
0<j<N-1 (43)

o

C. Excess MSE for Colored Noise
wheref[m, k] is defined in Appendix A as the response at time
k to the input signab[k — m]. The second ternt’{y2[k]} can . ) . ;

. . o L noise generated by contiguous physiological systems. For ex-
be easily calculated at steady-state using (64) in Appendix A as ; o . . .
ample, muscle electrical activity, motion artifacts, and baseline

wandering are often also recorded in ECG signals. Therefore,

Biomedical signals are always embedded in physiological

lim E{y2[iN + j]} nonwhite noise should also be considered in the convergence
imee o ) analysis of the AOLC. Most random processes with a contin-
= Zh_PQO Ty [EN + 4N + ] uous power spectrum density can be generated as the output

oo of a causal linear filter driven by white noise [40]. This white
= Z n[m] Z h[m1, jlhlm1 +m,j] (44) noise-driven model is called thienovations representatioof
m=—00 my=—00 the random process.

1) Complete Expansionstet g[k] be the impulse response
f the linear filter of the innovations representation of the col-

wherer,,[m] is the input noise autocorrelation function, and . L . .
h[m, 5] is the impulse response of the AOLC system at timared noiseu[k], and letw[k] the white input noise. The impulse
' sponse can be normalized in order to get a unity energy filter

instant; of the occurrence. In the special case of a white noigg 5 . . : .
2o lglk]|® = 1; therefore, noise power information will be

random input signat,, = 026[m)], the output noise energy : o . ;
i simplifieF()JI to gnat,[m] = o, 8[m} P gym the white input noise variancg?,. The excess MSE can be

calculated using (39) as

oo

fm ory (N +G NG =on 30 Bfmigl @) e =o2 L [ HEPGE) Ao (48)
mp=—o0 T
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which can be also easily evaluated using the Parseval’s relation
as

Eoo] = oy, D |h[K] + glk] . (49)
k=—oc0
The convolutiory[k] = Rh[k] * g[k] can be written as R T e
(a) (b)
o>
ylk] =2 Z (1—2) gk — iN]. (50) Fig.3. Original and simulated noisy observed signal occurrence with-SNR
i=1 20 dB. (a) Clean signai[]. (b) Observed noisy signdl[k].
For many biomedical signals, such as evoked potentials or ECG First KL basis funation Second K. basis function
signals, we can assume that the noise autocorrelation function is N b
shorter thanV, which is the occurrence length. From (49) and =, ’ ? = of\
(50) and assuming that the lengthgdk] is shorter thanV, we oosl e : “on /. :
get o . u.zTimB.(s)u.a - 02  ime (s)oA A
0z Third KL basis function 02 Fourth KL basis function
o0 o0 0.1 RTS8 . .
00 ]NJ 2 Z Z 2(7 1) 2[k iN] = ow )
k=0 i=1 “an , -
oo N-1 o2 0:2 - 0.4 o2 02 _ o4
24“ Z (1 _ 2/,L 2(Z 1) Z '[,N] Time (s) Time (s)
i=1 Fig. 4. First four KL basis functions of the ST-T complex.
I
~ EU?U = mgnlin. (51)

In order to get an equivalent result using the time-domain tran-
The excess MSE for complete expansions with colored inpgient analysis of**[k], more complex equations should be an-
noise is the same than for white noise. alyzed. When white noise is consideregymn] = o2§[m], (53)
2) Incomplete ExpansionsWhen a reduced number ofis equivalentto (47) because the impulse responses accomplish
functions are used in the AOLC, we have shown that tHdm,j] = 0;m < 0.
excess MSE can be easily evaluated using (42). The last term
2E{n[kly.[k]} is due to the interaction between the present V. RESULTS

noisen[k] and past noise samples and is evaluated as In this section, we experimentally verify the validity of the de-

rived equations so far. As a first step, we made a simulation to
2B {n[klyn[k]} evaluate the steady-state performance for stationary signals. A
> signal was synthesized as a sequence of reafjfidsEach one
Z him, kn[k — m]} consisted of a selected invariant ST-T complex of one normal
meTee heartbeat from record 103 of the QTDB database [32] and addi-
h[m, K| E{n[k]n[k — m]} tive Gaussian white noise/[k], with a value of SNR= 20 dB.
We show in Fig. 3 the selected clean heartbeat and a signal oc-
currence when the simulated noise is added.
him, klrn[m]. (52) We selected the optimal Karhunen—Loéve transform [40] as
m=—o0 an example of one commonly used orthogonal transform, but
any orthogonal transform could be used. The basis functions
Finally, evaluating the steady-state excess MSE at time instaidre estimated using a training set of signals from several

=2F

I
[\

I
gk '|'M8 =
=

k =4N 4+ j with ¢ — oo, we get databases [25] in order to adapt the basis functions to a large
population of ECG morphologies. These basis functions are
Lim &[N + 7] optimum in the sense that they represent the highest percentage

energy of the training set ensemble with the minimum number

ad of functions [40]. We show in Fig. 4 the first four KL basis
= < Z clm] fm J]> Z functions for the ST-T complex of the ECG.
"o e The AOLC filter was applied to the simulated signal, and

Z h[my, jlh[m + my, j] the results of steady-state excess MSE were compared with de-
oo rived equations in previous sections. As afirst step, we study the

o0 o0 MSE convergence of incomplete expansions without simulated

—2cj] > cmlffm,j1—=2 Y hm,jlr.[m]. noise. In this case, the weight error vector trajectdiyk] is
m=—o0 m=—o0 completely deterministic, and we will expect exact results from

(53) the analysis, setting[k] = 0. In this simplified case, the error
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n=0.05 p=04 p=3 and u=0.06 p=3 and p=0.4

VING]

Amplitude (mV)

Amplitude (mV)

im,

50 100 50 % 00 Y] T} oy v}
Occunrence time instant | Oocurence time instant | Yime (8)

(2) (b) (b)

Fig. 5. Theoretical and experimental steady-state weight error vectig.6. Impactofthe biased estimation of the steady-state weight vector on the
lim; .. V[iN + j] for two different values oft = 0.05 and 0.4 whep = 3  reconstructions. (g) = 0.05. (b)x = 0.4.
basis functions are used. (@)= 0.05. (b)u = 0.4.

p=3

signal will bee[k] = c[k] — VI [k]X[k]. Thus, the MSE can be
written as

&k = (c[k] — VI [RIX[R])?
=c?[k] + VIRIX[E]XT k] VK] — 2¢[k] VT R]X[K].
(54)

In this case, the steady-state weight error vector is only due to
the truncation erroe[k] because there is no noise in the simu-
lated signal. These are the best conditions for the AOLC to es- 0
timate the signak[k]. However, the steady-state weight vector
will be biased with respect to the optimum weight vector. WEg. 7. Theoretical and experimental values of the steady-gtafé] with
show in Fig. 5 the values of the steady-state weight error vector 3 KL basis functions without noise.
with two different values of the step-size= 0.05 and 0.4 when
only p = 3 basis functions are used in the AOLC. Theoretical reteady-state excess MSE can be negative because of the trunca-
sults are calculated using (25). Experimental results are obtairtiedh error.
by running the AOLC filter. Results of the the weight vector are The second step of verification is to consider the presence of
shown afteé = 100 signal occurrences where all transients haveise in the observed signals. In Fig. 8, we show the steady-state
died. Experimental and theoretical results are completely ovexcess MSE using derived expressions (37) and (47) and exper-
laid. Itis clearly seen that all the= 3 components of the weightimental measures averaging 10 000 runs of the filter with simu-
vector are a biased estimate of the optimum weight vector, alated noisy signals of SNR 20 dB afteri = 100 occurrences.
the steady-state bias is different for every occurrence ingtantVe show three different values of the number of functipns
Moreover, the bias is larger for higher valuesudfollowing an  The mean values of the experimental results of steady-state ex-
approximated linear relation with, as predicted in (25). cess MSE are overprinted on the theoretical values for both

In order to illustrate the impact of the biased estimation afases: small and large values of the step-giz&he value of
the steady-state weight vector on the reconstructed signal, steady-staté“*[k] decreases for high values of the numper
show in Fig. 6 the output signg[iN + 5 = WT[iN + j]X[j] of basis functions and for low values of the step-giz&\Vhen
usingp = 3 basis functions after all transients have died. Theis low, e.g.,p = 3, the truncation erroe[%] is much more
difference between the reconstructed signals obtained with thgortant than noise, and Fig. 8(a) is very similar to Fig. 7.
biased weight vector and the optimum weight vector are aimdthenyp is low, the steady-stat&*[k] can be negative, as can
invisible, especially for low values of the step-sizéfhe impact be seen from Fig. 8(a) and (b). However, the total M$H =
of the biased estimation of the steady-state weight vector on the,.[k]+£°7[k] is always a semidefinite positive quantity. When
reconstructed signal is very low in terms of signal deformatiop.is high, the truncation errark] is very small, and**[k] is

The steady-state excess MSE foe= 3 basis functions are positive [see Fig. 8(c)].
shown in Fig. 7 for two different values of the step-size= If we want to reduce the value of the total output signal error
0.05 and 0.4). We show the theoretical value§6fk] [the last  £[k], we can use a higher value of the numpeof functions
two terms in (54)] and experimental values for two differerdnd/or select a lower value of the step-sizeA question that
values ofy. Experimental results are shown afiee= 100 oc- arises now is which of both actions will be more efficient in
currences. Again, both results (theoretical and experimental) arder to reduce the total erréft]. To answer this equation, we
completely overprinted. Moreover, theoretical results are alsan use the three-term decomposition of the steady-&téte]
calculated as the sum of the first and third terms of both (3if) (37) and (47) and see which term is more important for a
and (42), showing their equivalence. It is corroborated that thezen condition of the input signal, the SNR of the contami-
steady-state excess MSE is different for every time instarit nating noise, etc. Moreove,,in[k] = ¢*[k] + E{n?[k]} only
the occurrence with higher values when the step-size is largdepends on the number of functigndVhen the truncation error
although no noise is present in the input signal. Moreover, tlemore important than the noise, the number of functions should

50 100 150
Occurrence time instant
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p=10 basis functions Pp=20 basis lunctions

—— =04
- I === =

0.05

50 100 5 100 50 100
Ocaurence time instant j Ocarence time instant | Occurrence time instant j

(a) (b) (c)

Fig. 8. Comparison of theoretical and experimental values of steadyéstatsingp = 3, 10, and 20 KL basis functions with SNR 20 dB. Note that vertical
scales are different. (&) = 3. (b)p = 10. (c)p = 20.

=20 basis functions p=20 basis funclions p=20 basis funclions

= b = =

2 _ 5 _ 15
i .
515 5 5
E ; o4 g 5| ﬂ
El‘ .% 2| ’E; o ﬂ[\le calo AN
£ £ V
“os f 1l - ) U

Y 150 n\“““--»-s; >>>>>>>>>>>>> 150 ) 150
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(a) (b) (c)

Fig. 9. Decomposition of steady-st&te* usingp = 20 KL basis functions with SNR= 20 dB. Note that vertical scales are different. (a) First term. (b) Second
term. (c) Third term.

be preferably increased. For example, from the conditioas approach, where the misadjustment could be interpreted as the
3 andi = 0.4 in Fig. 8(a), it is more efficient to increase thaesidual noise power that passes through the equivalent transfer
number of functions t@ = 10 with . = 0.4 than to decrease function of the system. This interpretation allowed an easy cal-
the step size tg = 0.05 withp = 3 (without evaluating the re- culation of the excess MSE for the case of colored input noise.
duction in¢,,,;, due to the increasing number of basis functions). In addition, the analysis was performed in two different
However, when the truncation error is small compared with tistuations: complete expansions and incomplete expansions.
noise, a decrease of the step size is the more appropriate choite steady-state misadjustment expressions for complete
For example, we show in Fig. 9 the decompositioréfk] expansions were in concordance with exact results previously
into the three terms fop = 20 basis functions with low and obtained when periodic impulses were used as reference inputs
high values ofy, and SNR= 20 dB. The noise term shown in[19], [29]. The same result of steady-state misadjustment is
Fig. 9(b) is more important than truncation error, and therefonegw generalized to any complete orthogonal transform. Some
a decrease of the step size is more efficient. important differences are obtained when only a reduced number
For clinical applications, we can be interested in specifiaf functionsp < /N are used in the expansion. The first one
areas of the repetitive signal that are located at equal tinsethat the weight vector converges to a biased estimate of the
instants;j inside the occurrence, e.g., ST elevation for ischem@ptimum Wiener solution. The bias is due to the truncation
detection, QRS amplitude, etc. With our analysis, we caror. Moreover, the value of steady-state misadjustment is
evaluate the steady-state MSE for every time of the sigrdifferent for every occurrence time instant.
occurrence instead of a mean value, as had been analyzed ifihe decomposition of the steady-state excess MSE into three
previous works. different terms (for the case of white noise) gives a useful cri-
teria for selecting the more appropriate parameters (hnumber of
basis functiong and the step-sizg) that define the AOLC
system. When the first term is higher than the others, the number
In this paper, we analyzed the steady-state MSE convergentdasis functions should be increased because the truncation
of the LMS algorithm using the adaptive orthogonal linear conerror is more important than the noise present in the signal. On
biner (AOLC), where the reference inputs were any set of dfie contrary, if the second term is higher, it means that lower
thogonal functions. The deterministic and periodic propertiealues of the step-size should be used in order to reduce the
of the reference inputs allowed an exact steady-state analysiaafount of noise.
the LMS algorithm. The primary input was a deterministic and Experimental results with electrocardiographic signals show
periodic signal contaminated by stationary noise. that derived expressions give exact results of steady-state excess
Two alternative formulations of the problem were used: Firsf)SE for any value of the step-size Many previous published
we used a time-domain formulation based on the solution of thesults were close to the exact solution given here because they
discrete-time recursive equation for the evolution of the weighnly considered low values of the step-sjizén their analysis,
vector. The second formulation is based on a transfer domaind in that case, the results are approximately equivalent.

VI. CONCLUSIONS
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APPENDIX A The output signal power will also be periodic
In this Appendix, we calculate the response of deterministic 5
and random inputs to a linear time-variant periodic filter. Many 2 . S . ;
digital signal processing textbooks analyze the response of a sV + 3] = m;m stmlflm. J] v (58)

linear time-invariant system to stationary random input signals
[39], [40], showing that if the random input signal is stationary e response to the stationary random input signg] will
in the wide sense, the output is also stationary in the wide sensg random with expected value

Moreover, the power spectrum of the output is the product of the

input spectrum and the modulus squared frequency response of o0
the system. However, when incomplete expansions are used, the E{y,[k]} = Z E{n[m]}h[k — m, kK] (59)
equivalent transfer function of the AOLC is linear time-variant m=—c0

and periodic with impulse respongén, k|. A closed form for

the instantaneous impulse responses of the AOLC is not kno#d E{yx[k]} = 0 if zero-mean noise is assumed. The autocor-
in general. However, the instantaneous impulse response t@lation ofy, k] will be

be related to the output of the filter in response to an impulse

function. Letf[j, k] be the output of the AOLC at instahtvhen ad

the input impt[JIse]was located at sampleThis signal will be £ Wnlklunlk +al} =E { > hlma, Knlk —my]

causalf[j, k] = 0;k < j. The impulse responses of the system el

{h[m,k];k = 0,1,---, N — 1}, where the first index denotes nd
the impulse response waveform and the second index is the time : Z hlma, k +aln[k + ¢ — ma]
instant when the impulse response is valid, can be written as me=Teo 50
h[m, k] = f[k — m, k] becausef[j, k] can be expressed as the (60)
linear convolution ) )
which can be written as
Skl = Y hlm,kJa[k —m)] E{yn[klynlk + ¢}
= Z h[m, kl6[k — j — m] = hlk — j,k]. (55) — Z h[my, k] h[ma, k + q]

Thereforeh[m, k] = 0;m < 0. The outputf[;, k] can be easily ~E{n[k —mi]n[k + ¢ — mo]}. (61)
obtained running the AOLC filter. We calculate the response of
such a time-variant system to deterministic and random inpUge random input signal is stationary, and hence
signals.

Let d[k] = s[k] + n[k] denote the input signal composed E{y,[klynlk + q]}
of a periodic deterministic componesk] and a wide-sense
stationary zero-mean random signak], with autocorrelation oo oo
functionr,,[q] = E{n[k]n[k + ¢]}. The output signak[k] can = > > himH
be also decomposed into two different components because the m1=-00 Mz=—00
system is lineary[k] = y;[k] + yn[k], wherey;[k] is the re- b [, b+ glrafg + ma — ma). (62)

sponse of the system to the deterministic compogrgtjtand
yn|k] the response ta[k].

The deterministic component can be directly obtained a
plying the linear convolution

he output random signal is not wide-sense stationary because
e autocorrelation function depends on the absolute time in-
stantk, due to the time-varying impulse response of the system.
oo oo The expression (62) can be simplified making the change of
vkl = > simlhlk—m, K= Y s[m]flm,k]. (56) Variablesm =m; —m; obtaining

m=—0o< m=—0o<
o

ElyalFlunlk +ql} = > ralg—m]

m=—0oc

The outputy,[£] will be periodic because[k] = s[k + N], and
flm, k] = flm + N,k + N]

. Z hima, k]h[ma +m, k + q].

wlk+N = 3 slmlfm.k+N] T 63)
- Z sim — N|f[m — N, k| = y,[k]. (57) For the misadjustment evaluation, we are interested in the

steady-state residual noise power of the output signal. This value

m=—0o<
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can be obtained from (63) by setting the autocorrelatiory lag
0 at time instant = ¢V 4 j and taking the limit — oc as

lim ry, [iN 4+ j,iN + 4]

2.

m=—0o<

ral=m] Y hlma, jlh[ma +m, ]

my=—00

> hlmy, gl hlma +m. 5] (64)

my=—00

oo

Z rn[m]

m=—0o<

In the special case of a white-noise random input signd] =
o2 6[q], and the output signal power is simplified to

lim 7y, [iN +5,iN +jl =02 Y h%[mi, 5] (65)
mp=—oc

APPENDIX B
When the truncation errog[] is very small (due to high

number of basis functions and very low values of the step-size

i are used, the analytical expressions that describe the excess
MSE [(37) and (47)] can be greatly simplified. In this Appendix,
we theoretically show that for this particular case both expres-

sions are equivalent.
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is approximately equal to the convolution of the time-invariant
impulse response corresponding to the complete expansion (38)
and the inner product values of the reference vectgrs =
XT[4]X[m]. Let f[4, k] be the output of the system at instant
when the impulse is located at samp|enriting

0, k<y

. . 4 69
2= 2, k> =kl 69

ik = {

The steady-state excess MSE can be calculated by seftting
0 in (47) and then taking the limit

lim E5EN +5]=0n Y hm,j].

m=—0o<

(70)

If we apply (69) and (55) to the last equation, we finally obtain

lim &[N + 4]
N+j—1

@u?(1-2p)* > i,

m=j+1

~ 2
=0,

N—-1

>

m=0

1o

= 2
1—

gm-

(71)

= i

The transition matrices product over a complete signal occur-In conclusion, we have theoretically shown that both expres-

renceF y1;_1 ; can be expanded as afth-degree polynomial

sions (37) and (47) for the steady-state excess MSE in the partic-

of 1. If very low values of the step size are used and quadratitar case of very low values of the step-size and low truncation

and higher order terms gncan be neglecte® x4 ;_1 ; in (1)
can be approximated @y ;—1,; ~ (1 — 2u)L, which is the

error give the same approximation. However, experimental re-
sults show their equivalence for any value of the stepssiand

same result as in the complete expansion case. Using this #g-number of functions.

proximation in (34), we can write

1

If the truncation error can be considered nulls{ = 0), the
steady-state excess MSE will only be composed of the term

lim &[N + j] = 4p2o2 XTI H; X[]

0_2
NiE%XTUK%XU]

1 (67)

where Q; was defined in (33). Using (33) and neglecting

guadratic terms op, we can write

lim &[N + 4]
N4j-1
=1 on 2. XTUIXmIX X
m=j
. N4j-1 . N-1
~ 2 2 2 2
~ 1—N0n 7; Tim = 1—N0n ;Um' (68)

For the second expression of steady-state excess MSE (47)[3]
is shown in [30] and [31] that when low values of the step—siqul]
4+ are used, the response to an impulse function at sagnple
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